How to help keV right-handed neutrino dark matter?

Hiroyuki Ishida (NCTS)

@5th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry

Introduction

- To consider new physics,
 - -Neutrino masses
 - -Dark matter candidate
 - -Matter-antimatter asymmetry

Introduction

- To consider new physics,
 - -Neutrino masses
 - -Dark matter candidate
 - -Matter-antimatter asymmetry
 - +concept of minimality

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

•The most economical extension : SM + 3RHvs

$$\mathcal{L}_N = i\bar{\nu}_{RI}\partial \nu_{RI} - F_{\alpha I}\bar{L}_{\alpha}H\nu_{RI} - \frac{M_N}{2}\overline{\nu_{RI}^c}\nu_{RI} + \text{h.c.}$$

*Key assumption

Dirac masses : $M_D \ll$ Majorana masses : $M_N \lesssim \Lambda_{\rm EW}$

*Seesaw mechanism [Minkowski (1977):Yanagida(1979):Gell-Mann,Ramond,Slansky (1979): Glashow (1980):Mohapatra,Senjanovic(1980)]

$$M_{\nu} = -M_D M_N^{-1} M_D^T \to 0.1 \text{ eV} \left(\frac{F}{10^{-7}}\right)^2 \left(\frac{1 \text{ GeV}}{M_N}\right)$$

Tiny neutrino masses can still be explained by the seesaw mechanism with small Yukawa coupling

The vMSM [Asaka, Blanchet, Shaposhnikov (2005)]
[Asaka, Shaposhnikov (2005)]

The vMSM [Asaka, Blanchet, Shaposhnikov (2005)]
[Asaka, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

The vMSM [Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

Physical states of neutrinos

*active neutrinos: $u_i = U_{ ext{MNS}}^\dagger
u_{Llpha} - U_{ ext{MNS}}^\dagger \Theta
u_{RI}^C$

*sterile neutrinos: $N_I^C =
u_{RI}^C + \Theta^{\dagger}
u_{L\alpha}$

The vMSM [Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

Physical states of neutrinos

*active neutrinos: $u_i = U_{ ext{MNS}}^\dagger
u_{Llpha} - U_{ ext{MNS}}^\dagger \Theta
u_{RI}^C$

*sterile neutrinos: $N_I^C = \nu_{RI}^C + \Theta^{\dagger} \nu_{L\alpha}$

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

Physical states of neutrinos

*active neutrinos:
$$\nu_i = U_{\mathrm{MNS}}^\dagger \nu_{L\alpha} - U_{\mathrm{MNS}}^\dagger \Theta \nu_{RI}^C$$

- *sterile neutrinos: $N_I^C = \nu_{RI}^C + \Theta^{\dagger} \nu_{L\alpha}$
 - right-handed neutrinos
- •Important parameter : $\Theta \equiv M_D/M_N$ Through this mixing,

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

•DM in the vMSM

*simple production mechanism (Dodelson-Widrow)

-Mixing 👉

-Phodonephramocribn rate

X-ray observatory

The vMSM [Asaka, Blanchet, Shaposhnikov (2005)]
[Asaka, Shaposhnikov (2005)]

·Constraints on DM

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

·Constraints on DM

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

·Constraints on DM

[Asaka, Blanchet, Shaposhnikov (2005)] [Asaka, Shaposhnikov (2005)]

Constraints on DM

• Resonant production [Shi and Fuller (1998)]

• Resonant production [Shi and Fuller (1998)]

Large # of lepton asymmetry

· Resonant production [Shi and Fuller (1998)]

Large # of lepton asymmetry

*typical required amount of Lepton asymmetry

$$\eta_L \equiv n_L/n_\gamma \gtrsim 10^6 \ \eta_B$$

How to produce?

- ·Late time resonant leptogenesis
 - *same idea as one leptogenesis for baryogenesis

[Pilaftsis and Underwood (2003, 2005)]

- ·Late time resonant leptogenesis
 - *same idea as one leptogenesis for baryogenesis

[Pilaftsis and Underwood (2003, 2005)]

- -small Yukawa coupling
- -mass degeneracy of RHvs

- ·Late time resonant leptogenesis
 - *same idea as one leptogenesis for baryogenesis

[Pilaftsis and Underwood (2003, 2005)]

- -small Yukawa coupling
- -mass degeneracy of RHvs

resonant lepton asymmetry production after EWSB is possible!

·Late time lepton asymmetry production

·Late time lepton asymmetry production

·Higher dimensional production @high scale

[Asaka, Eijima, Hl, Minogawa, Yoshii (2017)]

$$\mathcal{L}_{\mathrm{HD}} = \frac{A_{IJ}}{\Lambda} H^{\dagger} H \overline{\nu_{RI}^c} \nu_{RJ} + \mathrm{h.c.}$$

Produced amount of RHvs

$$\left[\rho_N^I \right]_{IJ} = \# \times \frac{M_P T_R}{\Lambda^2} \left[A^{\dagger} A \right]_{IJ}$$

$$\xrightarrow{\Lambda \to M_P} \# \times \frac{T_R}{M_P} \left[A^{\dagger} A \right]_{IJ}$$

[Asaka, Eijima, Hl, Minogawa, Yoshii (2017)]

·Effect on (constraint from) DM production

If
$$\sum_{\alpha} |\Theta_{\alpha 1}|^2 \ll 8 \times 10^{-8} \left(\frac{M_1}{1 \text{ keV}}\right)^{-2}$$

[Asaka, Eijima, Hl, Minogawa, Yoshii (2017)]

·Effect on (constraint from) DM production

14

[Asaka, Eijima, Hl, Minogawa, Yoshii (2017)]

·Effect on (constraint from) DM production

[Asaka, Eijima, HI, Minogawa, Yoshii (2017)]

Predicted reheating temperature (A=1)

[Asaka, Eijima, HI, Minogawa, Yoshii (2017)]

[Asaka, Eijima, Hl, Minogawa, Yoshii (2017)]

•Predicted reheating temperature (A=1)

Once DM mass and reheating temperature are given coupling strength of HD operator can be predicted!

[Asaka, Eijima, HI, Minogawa, Yoshii (2017)]

•When
$$T_R=10^{13}~{
m GeV}\,, A={\cal O}(1)\,,\, \Lambda=M_P$$
 $M_{N_1}\simeq 5~{
m GeV}$

$$-F_{\alpha 1}\bar{L}_{\alpha}H\nu_{R1}$$

[Asaka, Eijima, HI, Minogawa, Yoshii (2017)]

•When
$$T_R=10^{13}~{
m GeV}\,, A=\mathcal{O}(1)\,,\, \Lambda=M_P$$
 $M_{N_1}\simeq 5~{
m GeV}$

Z₂ need to be imposed

[Asaka, Eijima, HI, Minogawa, Yoshii (2017)]

•When
$$T_R=10^{13}~{
m GeV}\,, A={\cal O}(1)\,,\, \Lambda=M_P$$
 $M_{N_1}\simeq 5~{
m GeV}$

 $\mathbf{Z_2}$ need to be imposed

$$rac{A_{11}}{\Lambda}H^{\dagger}H\overline{
u_{R1}^c}
u_{R1}$$
 is invariant under ${f Z_2}$

This DM production becomes important!

[Asaka, Eijima, Hl, Minogawa, Yoshii (2017)]

•When
$$T_R=10^{13}~{
m GeV}\,, A={\cal O}(1)\,,\, \Lambda=M_P$$
 $M_{N_1}\simeq 5~{
m GeV}$

 $\mathbf{Z_2}$ need to be imposed

$$rac{A_{11}}{\Lambda}H^{\dagger}H\overline{
u_{R1}^c}
u_{R1}$$
 is invariant under ${f Z_2}$

This DM production becomes important!

Test might become difficult...

Summary

- KeV right-handed neutrino is still one of the possibilities of DM candidate
 - *Simplest production does not work
 - -Resonant production
 - Highly tuned parameters are required
 - -Higher dimensional operator production
 - What is the underlying theory?
 - Welcome to discuss about alternative possibilities!

Thank you for your aftention!

